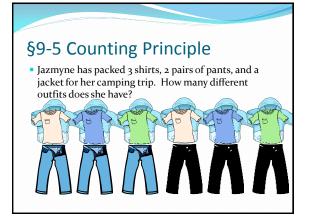

Tuesday, October 23, 2012


TISK Problems

- 1. Multiply: $\frac{12}{5} \left(\frac{20}{3} \right)$
- 2. What is the probability of rolling a number greater than 7 on a 20-sided die?
- 3. Convert to a percent: 4

We will have 3 Mental Math questions today

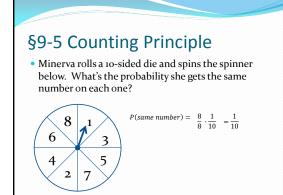
Homework: Counting Principle Practice worksheet

§9-5 Counting Principle		
 Jazmyne has packed 3 shirts, 2 pairs of pants, and a jacket for her camping trip. How many different outfits does she have? 		
Shirt #1	→ pants #1	This is a <i>tree diagram</i> .
Shirt #2	pants #2	It is one way to determine how may options you have.
Shirt #3	→ pants #1	

§9-5 Counting Principle

> pants #2

- Make a tree diagram to determine how many car packages you can choose from if you are buying a car with the following choices:
 - Color: blue, red, or white
 - Style: Van, Sedan, Convertible, SUV
 - Trim: Chrome, Wood


§9-5 Counting Principle

• As you can guess, these trees can get pretty complex.

- Imagine you're trying to create a password for an internet account. The password must be 5 letters or numbers, you cannot use o, and it is case sensitive. How many different 5-character passwords can you create? Make a tree diagram...?
- There must be an easier way!

§9-5 Counting Principle

- Counting Principle
- The fundamental counting principle states that if you have *m* choices for the first option and *n* choices for the second option, then you have *mn* total choices.
- So, for our password problem... we have 52 letters and 9 digits for a total of 61 choices for the first character, and 61 choices for each character thereafter.
 - Thus we have 61 · 61 · 61 · 61 · 61 total choices of passwords, or 844,596,301 total possible passwords.

